

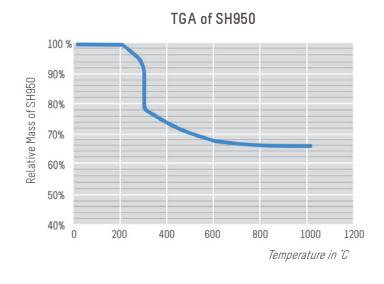
ALUMINIUM TRIHYDROXIDE FOR

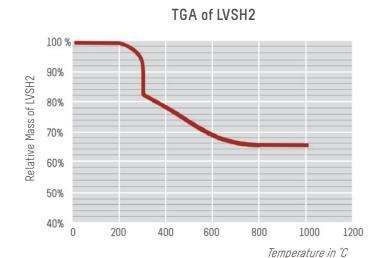
FLAME RETARDANT FILLERS

2019

GENERAL PROPERTIES

Aluminium trihydroxide (ATH) is a halogen free flame retardant filler. When heated above temperatures of approximately 200°C, an endothermic reaction will take place, liberating 3 molecules of crystal water and thereby removing energy from the combustion zone.


The loss of $34.6\,\%$ of its weight as water vapour also dilutes combustible gases.


Furthermore, no toxic smoke or decomposition products are formed during this reaction, making ATH an ideal product to comply with regulations.

Alteo ATH grades have well defined particle size, top cut and oil absorption values. These and other relevant characteristics enable you to choose the grade best suited to your application, processing conditions and required filler loads.

Name	Aluminium trihydroxide
Chemical Formula	Al(OH) ₃
C.A.S.	21645-51-2
Loss on Ignition	34.6 %
True Density	2.4g/cm ³
Hardness - Mohs scale	2.5 - 3.5
Refractive index	1.57

Thermogravimetric analysis (TGA) of Alteo ATH grades

FLAME RETARDANT

& fillers range

Alteo runs its Bayer plant in Gardanne - France. The plant produces a wide range of hydrates and calcined aluminas thereby securing the availability of controlled feedstock for all possible applications.

As the most widely used mineral in flame retardancy applications, Alteo offers a full range of unground, ground and viscosity improved aluminium trihydroxide fillers that allow high load levels in multiple resin and plastics systems.

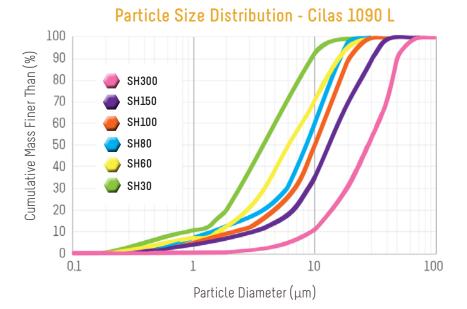
Typical applications and grades used

		Ungr	ound	Ground				Ground Viscosity optimized grades			Blends Low viscosity grades				
Polymer System	Application	SH950	SH500	SH300	SH150	SH100	SH80	SH60	SH30	LVSH1	LVSH2	LVSH3	FRAT33M	FRAT66	FRAT44
	SMC														
	BMC														
Polyester Resins	Gel coat														
	Pultrusion														
	Synthetic marble														
	PVC rigid														
PVC	PVC - Plastisols														
	Flooring														
Epoxy Resin	Electronic parts-Casting resins														
<u> гроху пезні</u>	Laminates														
	Foam														
Poly Urethane	Rigid														
	Casting resins														
	Pultrusion														
Acrylic Resins	Injection moulding														
	Artificial marble														
	Belt conveyors														
Rubber and latex	Elastomers														
	Carpet														
EVA, EVA/PE	Cables														
	Paint														
Others	External Thermal Insulation (ETICS)														
	Adhesives-sealants														

UNGROUND AND GROUND

ATH

These are our standard grades, used in a wide variety of applications and polymer systems.


Standard grades have a low fines content and a very well defined topcut.

Available as unground and as ground grade from 25 to 4 microns.

		Ungrou	nd ATH			Groun			
		SH500	SH950	SH300	SH150	SH100	SH80	SH60	SH30
Physical properties	Unit								
Particle Size Distribution (Cilas)									
D50	μm	55	95	25	14	11	8.5	6	4
< 2 μm	%			3	3	4	9	15	17
< 12 μm	%								92
< 32 μm	%					98	100	99	
< 45 μm	%				99				
< 63 μm	%			95					
Oil Absorption (oleic acid)	ml/100g	22	20	22	25	27	31	29	30
Specific Surface Area B.E.T	m²/g	0.2	0.15	1	1.2	1.5	3.0	5	9.5
Moisture Content	%	0.1	0.05	0.15	0.15	0.20	0.3	0.5	0.9
Loss On Ignition (100-1000°C)	%	34.6	34.6	34.6	34.6	34.6	34.6	34.6	34.6
Chemical analysis									
Al(OH) ₃ - by difference	%	99.7	99.7	99.7	99.7	99.7	99.7	99.7	99.7
Na ₂ O total	ppm	2300	1600	1600	2300	2300	2300	2300	2300
CaO	ppm	100	100	100	100	100	100	100	135
SiO ₂	ppm	55	40	45	60	60	60	65	70
Fe ₂ O ₃	ppm	65	70	70	65	65	65	80	95

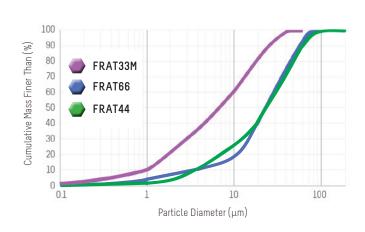
Typical data

VISCOSITY IMPROVED

GRADES

Responding to market needs, especially in resin based systems, Alteo has developed 2 ranges of improved and low viscosity grade hydrates. This enables our customers to increase loading levels that are necessary to meet evermore demanding legal requirements.

Particle Size Distribution - Cilas 1090 L 100 90 LVSH1 Cumulative Mass Finer Than (%) 80 LVSH2 70 60 LVSH3 50 40 30 10 0 0.1 100 Particle Diameter (µm)


LVSH2	

Viscosity Optimized Grades LVSH1 LVSH2 LVSH3 Physical properties Unit Particle Size Distribution (Cilas) 15 D50 11 8.5 7 $< 2 \mu m$ 98 94 < 32 μm < 45 μm 96 Oil Absorption (oleic acid) 25 22 20 m²/g Specific Surface Area B.E.T 2.2 Moisture Content 0.35 0.3 0.2 Loss On Ignition (100-1000°C) 34.6 34.6 34.6 Chemical analysis Al(OH)₃ - by difference 99.7 99.7 99.7 Na_aO total 2300 2300 2300 CaO 100 100 100 SiO, ppm 70 70 70 Fe₂O₃ 70 70 70

Typical data

FRAT33M

Particle Size Distribution - Cilas 1090 L

	Low Viscosity Grades					
	FRAT33M	FRAT66	FRAT44			
Unit						
μm	7.5	20	22			
%	99					
%		100	98			
ml/100g	18	18	16			
m²/g	3.4	2.5	1.5			
%	0.3	0.2	0.2			
%	34.6	34.6	34.6			
%	99.7	99.7	99.7			
ppm	2300	2300	2300			
ppm	100	100	100			
ppm	70	70	70			
ppm	70	70	70			
	μm % ml/100g m²/g % % ppm ppm ppm	FRAT33M Unit	FRAT33M FRAT66 Unit FRAT33M FRAT66 FRAT66			

Typical data

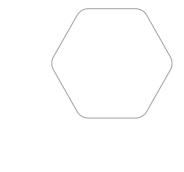
ALTEO R&D

For Alteo, innovation and application R&D are major parts of its growth strategy.

Alteo enhances its R&D capabilities through its application laboratory: the installation of state-of-the-art equipment, the recruitment of technical experts and collaborations with key partners and university laboratories.

Alteo constantly strives for the **best specialty** alumina-based solution to your ambitions.

Contact our R&D team now at www.alteo-alumina.com/contact


CUSTOMER CARE COMMITMENT

To meet your highest expectations, our Customer Care team will always strive to ensure a **first class** service.

Our commitment is to provide **full support** from your first call to the delivery of our products; with technical assistance, packing solutions and short lead times.

ALTEO AT A GLANCE

- A world leading fully-integrated supplier of specialty aluminas with a capacity of more than 600 000 tonnes of alumina based products (hydrates and calcined aluminas).
- Global sales network with 4 regional hubs, 17 offices and local warehouses around the world.
- Development centre in France.
- Leading raw material supplier to the following industrial markets: Ceramics, Refractories, Specialty Glass, Polishing, Flame retardants, Fillers and Coatings.

