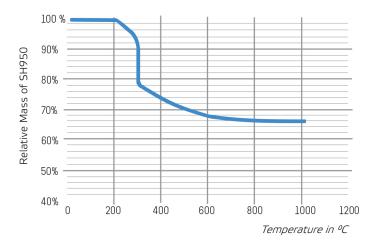
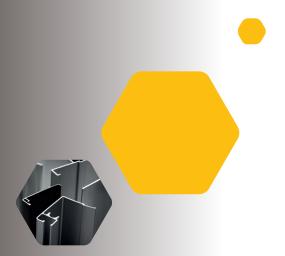


^R FLAME RETARDANT FILLERS

Aluminium trihydroxide (ATH) is a halogen-free flame retardant filler. When heated above temperatures of approximately 200°C, an endothermic reaction will take place, liberating 3 molecules of water and thereby removing energy from the combustion zone.


The loss of 34.6 % of its weight as water vapour also dilutes combustible gases.

Furthermore, no toxic smoke or decomposition products are formed during this reaction, making ATH an ideal product to comply with regulations.


Alteo ATH grades have well defined particle size, top cut and oil absorption values. These and other relevant characteristics enable you to choose the grade best suited to your application, processing conditions and required filler loads.

Name	Aluminium trihydroxide
Chemical Formula	Al(OH) ₃
C.A.S.	21645-51-2
Loss on Ignition	34.6 %
True Density	2.4g/cm ³
Hardness - Mohs scale	2.5 - 3.5
Refractive index	1.57

Thermogravimetric analysis (TGA) of SH950 grade

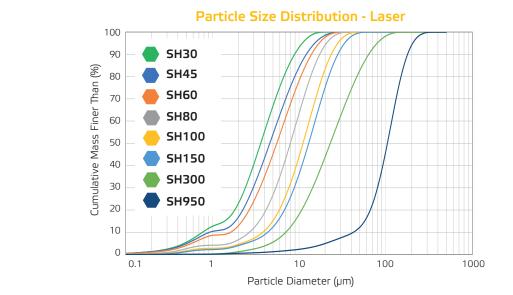
FLAME RETARDANT ATH fillers range

Alteo plant produces a wide range of hydrates and calcined aluminas thereby securing the availability of controlled feedstock for all possible applications.

As the most widely used mineral in flame retardancy applications, Alteo offers a full range of unground, ground and blends of aluminium trihydroxide fillers that allow high filler content in multiple resins.

Typical applications and grades used

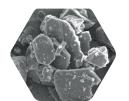
		Unground	Ground					Ground Broad PSD		Blends Optimized Packing Density			
Polymer System	Application	SH950	SH300	SH150	SH100	SH80	SH60	SH45	SH30	LVSH2	LVSH1	FRAT66	FRAT33M
	SMC		-	-		-						-	•
	ВМС		-	-									
Polyester	Gel coat					-		-	-				•
	Pultrusion												•
	Synthetic marble	-			-								
	PVC rigid												
PVC	PVC - Plastisols				•	-			-				
	Flooring		-		•	-							
Ероху	Electronic parts - Casting resins												-
_p = ., y	Laminates												
	Foam												-
Polyurethane	Rigid				-								
	Casting resins		-		•				•			•	-
	Pultrusion				-								
Acrylic	Injection moulding		-										
	Artificial marble	-			•								
	Belt conveyors												
Rubber and latex	Elastomers												
	Carpet				•								
	Paint												
Others	External Thermal Insulation (ETICS)	-											
	Adhesives - sealants								-				


UNGROUND AND GROUND

These are our standard grades, used in a wide variety of applications and polymer systems. Standard grades have a low fines content.

Available as unground and as ground grade from 23 to 3.5 microns.

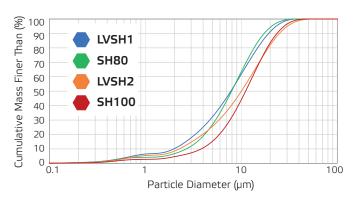
		Unground ATH	Ground ATH						
		SH950	SH300	SH150	SH100	SH80	SH60	SH45	SH30
Physical properties	Unit								
Particle Size Distribution (Laser)									
D10	μm		6	4	4	3	2	1	1
D50	μm	95	23	13	11	8	6	5	3.5
D90	μm		65	30	25	18	15	13	10
Oil Absorption (oleic acid)	ml/100g		20	22	24	27	28	29	30
Specific Surface Area (BET)	m²/g	0.2	0.7	1.2	1.8	2.4	6.4	9.0	11.0
Moisture Content	%	0.05	0.20	0.20	0.20	0.20	0.30	0.50	0.70
Loss On Ignition (100-1000°C)	%	34.6	34.6	34.6	34.6	34.6	34.6	34.6	34.6
Chemical analysis									
Al(OH) ₃ - by difference	%	99.7	99.7	99.7	99.7	99.7	99.7	99.7	99.7
Na ₂ O total	ppm	1950	1950	1950	1950	1950	1950	1950	1950
CaO	ppm	80	80	90	70	70	70	70	70
SiO ₂	ppm	60	60	60	60	65	65	65	65
Fe ₂ O ₃	ppm	75	75	75	75	75	75	75	75

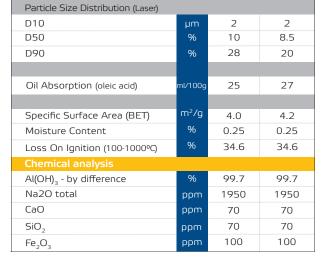

Typical data

SH950

SH100

Broad PSD


LVSH1


LVSH2

Alteo has developed 2 ranges of specific ATH enabling our customers to increase loading levels that are necessary to meet evermore demanding stringent regulations.

Physical properties

Particle Size Distribution - Laser

Typical data

LVSH2	
FRAT66	

			Particle Size	e <mark>Distribut</mark>	ion - Laser	
Cumulative Mass Finer Than (%)	100 90 80 70 60 50 40 30 20 10 0		FRAT33M SH100 FRAT66 SH300			
0	0	.1	1 Parti	cle Diameter (j	10 µm)	100

		Optimized Packing Densit				
		FRAT66	FRAT33M			
Physical properties	Unit					
Particle Size Distribution (Laser)						
D10	μm	2	1			
D50	%	20	8			
D90	%	60	26			
Oil Absorption (oleic acid)	ml/100g	15	19			
Specific Surface Area (BET)	m²/g	2.0	3.4			
Moisture Content	%	0.10	0.20			
Loss On Ignition (100-1000°C)	%	34.6	34.6			
Chemical analysis						
Al(OH) ₃ - by difference	%	99.7	99.7			
Na ₂ O total	ppm	1950	1950			
CaO	ppm	70	70			
SiO ₂	ppm	65	65			
Fe ₂ O ₃	ppm	75	75			

Typical data

ALTEO R&D

For Alteo, innovation and application R&D are major parts of its growth strategy.

Alteo enhances its R&D capabilities through its **Innovation and Technical Excellence Center**: the installation of **state-of-the-art equipment**, the recruitment of **technical experts** and collaborations with key partners and **university laboratories**.

Alteo constantly strives for the **best specialty** alumina-based solution to your ambitions.

Contact our R&D team now at www.alteo-alumina.com/contact

CUSTOMER CARE COMMITMENT

To meet your highest expectations, our Customer Care team will always strive to ensure a **first class** service.

Our commitment is to provide **full support** from your first call to the delivery of our products; with technical assistance, packing solutions and short lead times.

ALTEO AT A GLANCE

- A leading integrated supplier of specialty products with the largest production capacity worldwide for calcined, pure and fine alumina.
- A global sales network with 4 regional hubs, 17 offices and more than 35 local warehouses around the world.
- A leading raw material supplier to the following industrial markets: Advanced Ceramics, Thermal Management EV-Batteries, Flame retardant, Polishing, Performance Refractories, Glass.

www.alteo-alumina.com